
Testing Tolerance Principle on Corpus Data

1 Introduction

1.1 Deriving the Tolerance Principle
Rule-based learning, such as past-tense acquisition, is very commonly observed in lan-

guage acquisition, as when children form the regular past tense for a novel verb in an exper-

imental setting (wug -> wugged) (e.g. Berko, 1958) or when they spontaneously produce an

overregularization of an irregular verb (go -> goed) (e.g. Marcus et al., 1992; Yang, 2000; Pinker

and Ullman, 2002). Such evidence indicates that the rule is productive since it outputs word

forms that children have not previously encountered in their input. But what leads to use of

rules in the �rst place?

Yang (2005, 2016a) proposed the Tolerance Principle (TP) to predict when a productive

rule will be deployed by the language learner. In principle, a productive rule should be de-

rived when it delivers a more e�cient result. In this context, Yang used lexical access time to

measure e�ciency. He hypothesized that a productive rule reduces the total time complexity

to access all lexical items.

To estimate the time complexity, Yang �rst chose serial search as the lexical access model.

Serial search model (e.g. Forster, 1976, 1992) proposes that there are two stages in lexical

access. The �rst stage involves a sequential search of all the lexical entries, which is a ranked

list by their frequency. When a match is found, the matched lexical entry is used as an index

to retrieve all the necessary information ‘from a separate �le’ (Murray and Forster, 2004),

such as its semantics, its orthography or its past tense form. For example, in a vocabulary

inventory with m rule-following items (w) and n exception items (e), all the items are ranked

by their frequency. To access certain lexical information for wordwi , �rstwi is compared with

each item in the lexical entry starting from w1. When a match is found, the search terminates

automatically and the lexical information is retrieved. The search procedure is shown in table

1.

Applying a productive rule to the general serial search (GSS) model should reduce the time

complexity. Yang assumed Elsewhere Condition in rule application. Elsewhere Condition (e.g.

Anderson, 1969; Kiparsky, 1973; Halle and Marantz, 1993) proposes that a more speci�c form

is preferred over a more general one when both are available. When Elsewhere Condition is

implemented in the serial search procedure, the items that don’t follow the productive rule

are given priority in the search. Thus, Yang built a rule-based lexical access model combining

serial search and Elsewhere Condition, which he called Elsewhere Condition Serial Search

(ECSS). In the ECSS model, all the exception items (e) are stored in a ranked list by frequency,

and all the rule-following items are concatenated into a set. To access certain information (e.g.

past tense form) of a word (wi), wi is �rst compared to the exception list. If a match is found,
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a speci�c form for the matching exception is retrieved. If not, the productive rule is applied.

The search process for ECSS is shown in figure (2). For example,we4
can be irregular verb

eat and wj can be regular verb type. To access the past tense form for eat and type, the two

verbs are �rst compared to the irregular verbs in Bin A. When a match is found for eat, the

past tense form ate is retrieved. When the search is exhausted in Bin A and still no match for

type, the general past tense rule is applied to type, outputting typed.

Figure 1: General Serial Search Model

Bin S

rank item frequency

1 w1 n+ z1

wi
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
Searcℎ 2 e1 n−x1

3 w2 n−x1 + z2

4 w3 n−x1 + z2

5 e2 n−x2

... ...

... wi ... → retrieve the lexical information for wi

n en n−xn

... ... ...

... ... ...

m wm 1

Figure 2: Elsewhere Condition Serial Search Model

Bin A

rank item frequency

we4
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
Searcℎ 1 e1 n

2 e2 n−x1

3 e3 n−x2

4 e4 n−x3 → retreive the speci�c form for e4

... ... ...

n-1 en−1 n−xn−2

n en n−xn

Not in Bin A

wj
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
Searcℎ w1, w2, w3...wm → apply the productive rule

Judging on the basis of figure 1 and 2, the ECSS model seems to be a more e�cient

search procedure since there are fewer items in the lexical list. However, occasionally it could

be more time consuming to search for an item in the ECSS model. For example, for the item

w2, it will take less time to �nd it in the GSS model. In the GSS model, since w2 is the third

most frequent word, the search can be terminated after examining w1 and e1. However, in

the ECSS model, the rule-following item w2 will be reached only after all the exceptions are

checked, which creates more time complexity. Therefore, the time complexity for the ECSS

model is determined by the number of exceptions and the location of the exceptions in the

list. Based on Yang’s hypothesis, the TP hypothesis will hold true when the time complexity

for ECSS model (TE) is less than that of the GSS model (TG).
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The average time complexity for each word is product of the probability of the word (pi)

and the access time (ti). For a list of N words, the total time complexity for GSS model (TG) is:

(1) TG =

N

∑

i=1

(pi ⋅ ti)

When a productive rule is derived, the ECSS model will be in use. The total time complexity

for the ECSS model involves two parts, the time complexity for the exception list and the time

complexity for rule-following item set. The total time complexity for rule-following items

(Tw ) is the time complexity, which is the product of an exception item’s probability pj and the

lexical access time tj , and the time complexity for the rule-following item set, which is the

product a rule-following item’s probability pk and the lexical access time tk . The total time

complexity (TE) is shown in (2).

(2) TR =

e

∑

j=1

(pj ⋅ tj) +

N−e

∑

k=1

(pk ⋅ tk)

Based on Yang’s hypothesis, the TP will be true if TE is smaller than TG . Therefore, the

TP is derived:

(3) Tolerance Principle:

Let TG and TE be the lexical access time complexity for a ranked list of items without

a productive rule and with one. A productive rule is derived if and only i�:

TG ≥ TR

1.2 The TP and the Exceptions
In real life rule-based learning, children encounter exceptions very often, if not more often

than the rule-following items. For example, the most frequently used verbs in child directed

speech are more likely to be irregular verbs, go, have, do, eat, drink.... Children can only

generate rules when the input has enough rule-following items. Therefore, the rule-based

learning question can also be framed as: How many exceptions can a child tolerate in order

to derive the rule? Since the number of exception type (e) is a variable in the time complexity

formula for the ECSS model (TE), Yang used the TP inequation to estimate the maximum value

for (e):

(4)

N

∑

i=1

pi ⋅ ti ≥

e

∑

j=1

(pj ⋅ tj) +

N−e

∑

k=1

(pk ⋅ tk)

To calculate the probability for each word (pi) in TG , Yang assumes that the ranked word

list in GSS model follows the Zip�an distribution; therefore, the product of the word’s fre-

quency (fi) and its rank (ri) is a constant (C):

(5) ri ⋅ fi = Ci

The probability of a word (pi) is the word’s frequency (fi) divided by the sum of the frequencies

of all the words. Therefore, pi can be expressed as (6) where HN =

N

∑

k=1

1

rk

.
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(6)
pi =

fi

N

∑

k=1

fk

=

Ci

ri

N

∑

k=1

Ck

rk

=

1

ri

N

∑

k=1

1

rk

=

1

ri ⋅HN

The lexical access time (ti) is generally believed to have a logarithmic relation to its frequency

(e.g. Howes and Solomon, 1951; McCusker, 1977; ?). This implies that the access time is not

determined by the absolute frequency, but a transformed function of the frequency. Murray

and Forster (2004) further proposed the rank hypothesis arguing that the access time is directly

related to the rank position of a frequency-based ranked list. Yang adopted the rank hypothesis
and simpli�ed it as ‘the i-th ranked item takes i units of time to be retreived’ (Yang, 2018),

shown in (7).

(7) ti = ri

Inserting pi and ti to the formula in (1), TG can be written as:

(8) TG =

N

∑

i=1

(

1

ri ⋅HN

⋅ ri) =

N

HN

As for the TE , since the exceptions and rule-following items are stored in a ranked list

and a set separately in the ECSS model, the probability for the exception item (pj) and the

rule-following item (pk) are di�erent. The probability of the exception (pj) the product of

the probability of the exception list in the total vocabulary inventory (Pr(exception)) and the

probability of the exception item in the list (Pr(j)). Yang argued that Pr(exception) is the types

of exceptions (e) divided by the types of all items (N ), as shown in (9a). He assumed that after

a rule is derived, the learner can already distinguish a rule following item and an exception,

which means the token of each item doesn’t play a role. Therefore, Pr(exception) is calculated

as the exception types over total types instead of tokens. To estimate Pr(j), Yang assumed that

the items in the exception list also follows Zip�an distribution. Therefore, equation (5) can

also be used to calculate Pr(j), which is shown in (9b). The probability of an exception item

(pj) is the product of Pr(exception) and Pr(j), which is shown in (9c). The lexical access time

for each exception item tj equals the rank of the item rj .

(9) a. Pr(exception) =

e

N

b.

Pr(j) =

fj

e

∑

k=1

fk

=

1

rj ⋅He

c. pj = Pr(exception) ⋅Pr(j) =

e

N

⋅

1

rj ⋅He

d. tj = rj

As for rule-following item, the probability and lexical access time for all the rule-following

items should be the same. Yang assumed that the lexical access time (tk) equals to e, since

there are e exceptions in the list, as shown in (10a). The sum of pk is the probability of the

rule-following item set in the total vocabulary inventory, which is shown in (10b)

(10) a. tk = e

b.

N−e

∑

k=1

pk = 1−Pr(exception) = 1−

e

N
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Inserting pj , tj , tk and

N−e

∑

k=1

pk back to equation (2), TE can be written as:

(11) TR =

e

∑

j=1

(

e

N

⋅

1

rj ⋅He

⋅ rj) + (1−

e

N

) ⋅ e =

e

N

⋅

e

He

+ (1−

e

N

) ⋅ e

Therefore, TG ≥ TR can be written as:

(12)

N

HN

≥

e

N

⋅

e

He

+ (1−

e

N

) ⋅ e

To calculate maximum number for e, Yang �rst approximated HN as lnN . HN is always

larger than lnN : HN =

N

∑

k=1

1

k

= lnN + +�N , where  is the Euler-Mascheroni constant ( ≈ 0.58)

and �N ∼

1

2N

. When N is large enough, the di�erence between HN and lnN is smaller than 1.

Thus, formula (12) can be written as:

(13)

N

lnN

≥

e

N

⋅

e

lne

+ (1−

e

N

) ⋅ e

N

lnN

≥

e
2

N

⋅ (

1

lne

−1)+ e

Since

e
2

N

⋅ (

1

lne

−1) is always smaller than or equal to zero, as long as e is smaller than

N

lnN

,

then the inequation will always hold true. Therefore, Yang summarized another version of

the TP with exceptions:

(14) Tolerance Principle (with exceptions):

Let R be a rule applicable to N items, of which e are exceptions. R is productive if and

only i�:

e ≤ �N , where � =

N

lnN

(Yang, 2016b, p.64)

1.3 The Testability of the TP
Instead of using the original version of the TP as in (3) in empirical testing, Yang used (14)

as the functional TP. In this version, the TP will hold true if the observed types of exceptions

(e) is smaller than than the theoretical threshold

N

lnN

, where N is the type of all items in the

corpus. The exception version of the TP is much simpler than original version of the TP where

the time complexity is calculated. It is less data-demanding and more user-friendly, since there

are only two variables (e and N ) in the exception version, comparing to eight variables in the

time complexity version. However, the exception version doesn’t necessarily represent the

original TP, since it is simpli�ed based on many assumptions that are always true in practice,

such as corpus follows Zip�an distribution and the lexical access time equals rank. The testing

results on the exception version of the TP also provided controversial results.

Evidence from arti�cial language learning (Schuler et al., 2016) supports the exception

version of TP. In the experiment, children between the ages of 5 and 7 heard names of nine

novel objects in both singular and plural forms. Each plural marker either followed a rule (add

ka) or instead used an individual su�x (add po, tay, lee bae, muy, or woo). In one condition,

children heard �ve nouns with the ka marker and four with individual markers. In another
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condition, they heard three nouns with the ka marker and six with individual markers. Ac-

cording to the TP, the exception threshold is

N

lnN

(N=9), which is 4.10. It means that the

children can tolerate up to 5 exceptions out of 9 items in order to derive a rule. As the TP

predicts, children learned the rule under the 5-exceptions/4-regular condition but not the 6-

exceptions/3-regular condition, as shown by their ability to use ka as a general plural marker

in a Wug-like test.

However, the corpus data doesn’t conform to the prediction of the exception version of the

TP. Yang applied it to explain the past tense acquisition on Adam’s and Eve’s data from Brown

corpus (Brown, 1973). English speaking children usually start to produce the past-tense form

by the age of 2. Most children also produce overregularization errors on past tense, such as

grewed, feeled (e.g. Marcus et al., 1992; Yang, 2000; Pinker and Ullman, 2002). The �rst instance

of an overregularization error can be seen as an unambiguous marker for the presence of a

productive ‘add -d’ rule for past tense.

Adam produced his �rst overregularization error at the age of 2;11, when he said What
dat feeled like?. This error implied that Adam had already constructed the past tense rule.

According to TP, the number of irregular verbs that Adam knew (e) must be smaller than

� =

N

lnN

, where N is the number of all the verbs in his vocabulary. Adam’s �rst recording

starts at 2;3. Yang thus estimated Adam’s e�ective vocabulary (N ) as all the verbs he produced

between 2;3 and 2;11. Yang counted all forms of verbs as N . According to Yang, as long as

Adam produced one form of a verb, that verb has to be in Adam’s lexicon. Based on this

method, he found 300 verbs. Therefore, Adam can learn the rule when there are fewer than

N

lnN

(N = 300) ≈ 53 irregular verbs. However, Yang counted 57 irregular verbs in Adam’s total

300 verb corpus. He attributed the di�erence between 57 and 53 to sampling e�ects.

Yang used the same method to test Eve’s data. Eve’s �rst overregularization error appeared

at 1;10 when she said it falled in the briefcase1
. Yang found 163 verbs Eve produced between

the age 1;6, when Eve had her �rst recording, and 1;10. WhenN = 163,

N

lnN

≈ 32, which means

Eve could only tolerate 32 irregular verbs in order to produce the past tense rule. However,

Yang found 49 irregulars in her production, which is again higher than what the TP predicts.

He attributed the di�erence to undersampling of Eve’s data.

It’s unfair to attribute the TP’s failure to the sampling e�ects given only two children’s

data. Similarly, it is unfair to conclude the TP doesn’t hold true on corpus data. In this paper,

we argue that the exception version of the TP is not testable on corpus data. As mentioned

above, it assumes that the corpus follows a Zip�an distribution. In an arti�cial language learn-

ing experiment, the corpus can be designed to be Zifpian. However, a Zip�an distribution is

not guaranteed for real-life corpus data, such as all the verbs and irregular verbs a 2-year-old

child knows. The exception version of the TP also assumes that the word’s lexical access time

equals its rank location, which might not be true in real-life acquisition. One important pre-

requisite for the rank hypothesis is that the speaker has to establish a stable frequency-based

ranked vocabulary list that each word have a �xed rank position regardless of the increasing

absolute frequency. The rank hypothesis also requires the speaker to have perceived famil-

iarity for each word, which is also deviant from the word’s absolute frequency. In addition,

age of acquisition is also a very important factor in determining the rank position of each

word (e.g. Morrison and Ellis, 1995; Ellis and Morrison, 1998; Gerhand and Barry, 1999). In an

1
Yang made an error here. Eve made the �rst overregularization error at the age of 1;8

(Brown/Eve/010800.cha), when she said I seed it.
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arti�cial language experiment, the perceived familiarity and the age of acquisition of a word

are easily controlled. However, in corpus data, there is no way to measure how these two

factors impacted the rank position of a certain word. Moreover, the most supportive evidence

for the rank hypothesis comes from lexical decision task data in college students, who satisfy

all the prerequisites for the rank hypothesis (Murray and Forster, 2004). The corpus data are

collected on language learning children. Therefore, the rank hypothesis probably is the most

appropriate way to estimate time complexity in corpus data.

In this paper, we propose that the discrepancy of the TP’s prediction and the corpus data

can’t be simply attributed to the sampling e�ects, and it doesn’t show that the TP has failed

either. We argue that the exception version of the TP is not testable on the corpus data because

many assumptions don’t hold true on corpus. To properly test the TP on corpus data, we

propose to directly compare the time complexity instead of comparing number of exceptions

as a proxy. The rest of the paper is organized as follows: in section 2, we introduce a corpus-

testable TP based on the original version in (3). In section 3, we test it on eight children’s

corpus data, including Adam and Eve. In section 4, we discuss the implications of the results

on the TP on corpus data.

2 Testing Corpus

2.1 Corpus Data
We use eight children’s corpus data from CHILDES (MacWhinney (2000) to test Tolerance

Principle. These children’s past tense acquisition have been intensively studied in previous

literature
2
. We adopted Yang’s data selection criteria, that we included all the �les from the

�rst recording �le to the �le that the child made his/her �rst overregularization error. The

sample size and sample density varies for each child. The average age range is about 8 months

from the age of �rst recording to age of the �rst overregularization error, with a minimum

of 2 months interval (Eve 1;6 - 1;8) and maximum 18 months interval (Allison 1;5 - 2;11). On

average, each child has 23.5 �les, with a maximum of 90 �les (Fraser) and a minimum of 2 �les

(April).

Table 1: Summary of corpus data for each child

Age range corpus �les

child’s

word tokens

parent’s

word tokens

Adam 2;3 - 2;11(feeled) Brown (1973) 18 39,403 30,366

Eve 1;6 - 1;8 (seed) Brown (1973) 5 5,304 11,253

Sarah 2;3 - 2;10 (heared) Brown (1973) 33 18,778 27,682

Peter 1;3 - 2;6 (broked) Bloom et al. (1974) 14 52,769 95,180

Naomi 1;3 - 1;11 (doed) Sachs (1983) 20 8,009 9,634

Allison 1;5 - 2;11 (throwed) Bloom (1973) 6 4,605 9,366

April 1;10 - 2;1 (boughted) Higginson (1985) 2 1,376 4,435

Fraser 2;0 - 2;5 (seed) Lieven et al. (2009) 90 137,407 222,200

All of the data were automatically extracted from the annotated corpora in CHILDES using

2
Adam, Eve, Sarah, Peter, Naomi, Allison and April were studied in Marcus et al. (1992). Fraser was studied

in Lieven et al. (2009).
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the nltk python package. The verbs in each �le were identi�ed using part-of-speech taggers

annotated by the MOR program (MacWhinney, 2012). Instead of only using the verbs in

children’s production, we also counted all the verbs the parents’ produced. Since the N and

e represents all verbs and irregular verbs the child knows, the child’s production and the

parents’ input provide the lower and upper bounds of the child’s vocabulary. A summary of

the verbs and irregular verbs is shown in table 2.

Table 2: Summary of verbs and irregular verbs

Child’s production Parents’ input

verb

tokens

verb

types

irregular

tokens

irregular

types

verb

tokens

verb

types

irregular

tokens

irregular

types

Adam 6,747 306 3,632 62 4,670 297 2,863 70

Eve 564 93 337 36 1,618 138 966 50

Sarah 1,759 189 1,035 48 3,867 293 2,525 68

Peter 7,532 424 3,647 67 15,537 633 8,466 83

Naomi 1,240 128 757 43 1,463 174 945 59

Allison 612 88 335 36 1,453 140 936 44

April 128 50 62 19 658 100 429 37

Fraser 13,924 371 9,903 78 32,359 581 23,169 97

2.2 Corpus-testable TP
The original version of the TP in (3) compares the lexical access time complexity for the

GSS model (TG) and ECSS model (TE). In this section, we use corpus data to calculate all the

variables shown in in the formula in (1) and (2) (repeated in 15 and 16) to calculate TG and TE

directly. The TP will be tested to be true if TG ≥ TE .

(15) TG =

N

∑

i=1

(pi ⋅ ti)

(16) TE =

e

∑

j=1

(pj ⋅ tj) +

N−e

∑

k=1

(pk ⋅ tk)

Table 3: Summary of the variables

pi

probability of a verb

in a ranked list

ti

access time of a verb

in a ranked list

pj

probability of an irregular verb

in a ranked list

tj

access time of an irregular verb

in a ranked list

pk

probability of a regular verb

in an unordered set

tk

access time of a regular

in an unordered set

First we would like to reduce some of the variables. Since all the regular verbs are stored

in a set, the probability (pk) and the access time (tk) should be same for all regular verbs.

All the regular verbs are processed after they are compared to all the irregular verbs in the

ranked list, therefore tk should be the total time complexity of all the irregular verbs, which is
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e

∑

j=1

(pj ⋅ tj). The sum of the pk is the probability of a word that is not a irregular verb combining

the ranked list and the unordered set, which is 1−

Se

SN

, Se and SN are the tokens for irregular

verbs and all verbs. Therefore, the formula for TE can be written as:

(17) TE =

e

∑

j=1

(pj ⋅ tj) + (1−

Se

SN

) ⋅

e

∑

j=1

(pj ⋅ tj) = (2−

Se

SN

) ⋅

e

∑

j=1

(pj ⋅ tj)

Therefore, the formula was reduced to two set of variables: the probability for a verb in a

ranked list (pi and pj) and the access time for a verb in a raked list (ti and tj). The following

session, we are discuss how to estimate probability and time complexity.

2.3 Estimating Probability
The exact probability for each word can be calculated based on the word tokens in the

corpus. However, the corpus was only a small part of ?????, the exact probability in the corpus

doesn’t truly re�ect the probability of each word in the child’s vocabulary. To compensate

for the limitation of corpus data, the probability can be estimated based on word frequency

distribution.

Word frequency distribution follows a puzzling but systematic pattern that there are few

very high-frequency words that account for most of the tokens in the text and many low-

frequency words. Zipf’s law is the most famous empirical description of this pattern, stating

that in a given corpus, the frequency of any word f (r) is inversely proportional to its rank

r (Zipf, 1935, 1949). Yang assumed the corpus follows classical Zip�an distribution where

the exponent k = 1, as shown in table 4. However, word distribution in real life corpus

is complex that the classic version of Zip�an distribution usually can’t best �t the data. One

way to improve the �tness is to use a general version of the Zipf’s law where the exponent (k)

is greater than 1 (e.g. Adamic and Huberman, 2002; Moreno-Sánchez et al., 2016). Moreover,

the Zipf’s law can also be generalized by ‘padding up’ the rank by an amount b, which is the

Zipf-Mandelbrot law (Mandelbrot, 1965). Empirical data showed that frequency distribution

of word within the same categories �ts nicely by Zipf-Mandelbrot law (Piantadosi, 2014). In

addition, the classic Zipf’s law can also be generalized into a log-normal distribution, which

is a better �tting model for word frequency distribution (Carrol, 1967; Carroll, 1969; Baayen,

2002). The formula and PDF for each distribution is shown in table 4.

We compared these four distributions on children’s and parents’ verb and irregular verb

distribution. The curve-�tting graph for each child can be found in Appendix. Though each

distribution �ts the data di�erently, it’s di�cult to select a better �t distribution. Judging from

the graphs, the General Zip�an distribution and the Lognormal distirbution seem to �t more

data than the other two distributions. The goodness of �t was compared between these two

distributions using python powerlaw package (Alstott and Bullmore, 2014). R is the loglikeli-

hood ratio between General Zip�an and Lognormal distribution, where the positive number

indicating that it is more likely to be Lognormal distribution. All the data had a positive R-

value, however only 10 out of 32 distributions are signi�cant at � = .05 level. A summary of the

comparison can be found in table 5. In conclusion, the curve-�tting graph and loglikelihood

comparison couldn’t provide enough evidence to decide a best-�tting distribution. Since all

the distributions predicted the frequency values are not too deviant from the empirical data,

in this study we are going to use the exact probability for each word that is calculated through

tokens as pi and pj .
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Table 4: Possible distribution for word frequencies

f (x) p(x)

Classic Zip�an

f (r) = C ⋅ r
−k

(k = 1)

p(r) =

1

r ⋅HN

General Zip�an

f (r) = C ⋅ r
−k

(k ≥ 1)

p(r) =

1

r
�
⋅HN ,�

(� ≥ 1)

Zipf-Mandelbrot

f (r) = C ⋅ (r +b)
−k

(b ≥ 0, k ≥ 1)

p(x) =

1

(r +b)
�
⋅HN ,b,�

(b ≥ 0,� ≥ 1)

Lognormal
f (r) = e

d−m(lnr)
k

(d,m ≥ 0, k ≥ 1)

p(x) =
e
−((lnx)

2
/2�

2
)

x�

√

2�

� > 0

Table 5: Comparison between General Zipf and Lognormal

child’s production parent’s input

R verb

irregular

verb

verb

irregular

verb

Adam 2.52* 1.39 4.47** 0.88

Fraser 0.31 1.10 0.43 1.08

Peter 4.86** 2.02* 4.64** 1.75

Naomi 3.20** 0.04 1.11 1.28

Allison 0.74 0.76 1.16 0.85

April 0.69 0.21 3.31** 0.55

Eve 3.11** 2.22* 3.63** 0.21

Sarah 3.20** 0.19 3.92** 0.40

2.4 Estimating Access time
The frequency of the word is the most potent factor in determining the lexical access time

3
(Whaley, 1978). rd access The lexical access time is related to the frequency of the word. In

addition, the relationship of frequency and the access time is logarithmic. The nature of the

frequency e�ects in lexical access is still under debate. Under the lexical retrieval model, fre-

quency is treated as an diagnostic indicator for sequential search (Becker, 1979; Forster, 1976;

Paap et al., 1982). Murray and Forster (2004)’s rank hypothesis was also proposed with the

assumption that the frequency is an indicator for lexical access time. They further proposed

that the optimal procedure would be that the frequency o�ers the rank position, which is the

lexical access time.

However, most of the lexical access time studies are based on adults data, who already

have the optimal procedure for lexical search. Very little is known about children’s lexical

retrieval behavior. In this paper, we are going to assume that frequency plays a bigger role

in children’s lexical retrieval than simply provides a rank position. Moreover, the frequency

3
Other factors such as length, regularity, homophony, number of meanings only have an in�uence when

frequency is controlled
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does not have a strict inverse porportion to the lexical access time, since the children already

acquired the verbs. Therefore, the children’s lexical access time should be larger than the

optimal rank hypothesis, and smaller than the absolute frequency e�ects. Since too little is

known to estimate the access time for children, we are going to use the rank and absolute

frequency as the minimum and maximum access time for each child. The real access time

should fall in the range. To keep the same scale for two methods, we are going to make

the most frequent word have 1 unit of lexical access time. In the rank hypothesis, the second

most frequent word would have 2 units of lexical access time, which is its rank. In the absolute

frequency account, the second most frequeng word would have t units of lexical access time,

where t is the proportion of the second word’s in the �rst word, which is

S1

S2

. A summary of

the access time (t) predicted by tokens (S) is shown in table 6.

Table 6: Summary of lexical access time

t

Rank hypothesis (mimimum) ti = ri

Real lexical access time ri ≥ ti ≤
S1

Si

Absolute frequency (maximum) ti =

S1

Si

3 Testing the TP on Corpus Data

3.1 Testable TP
For each child, we are going to test the TP on their own production and on their parents’

input. The children’s production should provide the lower boundary for the time complexity

and the parents’ input provides the upper bound. To test the corpus data, we are going to use

the tokens to calculate the exact probability for each word, since all the distributions don’t

make a big di�erence in the actual data �tting. We are going to use the rank position as the

minimum access time and absolute frequency as the maximum access time. The formula for

TG and TE are shown in (18a) and (18b). If the TG−max > TE−max and/or TG−min > TE−min, the

TP will be tested to be true.

In this paper, each child has four sets of TG and TE comparisons: TG−max,cℎild vs TE−max,cℎild ,

TG−max,parents vs TE−max,parents , TG−min,cℎild vs TE−min,cℎild and TG−min,parents vs TE−min,parents .

We predict that the TP is more likely to be tested true on parents’ input data and the mini-

mum version of the time complexity, which means that TG−min,parents > TE−min,parents is more

probable.

(18) a. TG−max =

N

∑

i=1

(

Si

SN

⋅

S1

Si

) = N ⋅

S1

SN

b. TG−min =

N

∑

i=1

(

Si

SN

) ⋅ ri
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(19) a. TE−max = (2−

Se

SN

) ⋅

e

∑

j=1

(

Sj

Se

⋅

S1

Sj

) = (2−

Se

SN

) ⋅

e ⋅ S1

Se

b. TE−min = (2−

Se

SN

) ⋅

e

∑

j=1

(

Sj

Se

⋅ ri)

3.2 Testing Results
The testing results are shown in table 7. Six children’s corpus data fully conformed to

the TP’s prediction, that all four sets of comparison are true. The maximum version of the TG

and TE on Allison’s and April’s data failed the TP’s prediction. The values for TG−MAX and

TE−MAX are really close for Allison (9.35 vs 10.15) and April (4.3 vs 5.11) that we believe that

such small di�erence could be attributed to sampling e�ect. April has the smallest sample of

all children that she only had 2 �les with total 612 verb tokens and 88 verb types. Allison

has the least densed sample that she had 6 �les over 18 months of interval. Since all of the

children have at least three sets of comparisons tested to be true, we would like to conclude

that the results demonstrate that corpus data support the TP.

Table 7: Summary of the Testing Results

Children’s production

TG−MAX TE−MAX TG−MAX > TE−MAX TG−MIN TE−MIN TG−MIN > TE−MIN

Adam 36.87 20.29 TRUE 33.80 13.65 TRUE

Eve 7.42 6.74 TRUE 17.51 11.02 TRUE

Sarah 18.05 11.00 TRUE 25.65 11.13 TRUE

Peter 40.98 20.27 TRUE 43.82 12.72 TRUE

Naomi 13.32 10.18 TRUE 19.63 11.10 TRUE

Allison 9.35 10.15 FALSE 18.24 12.25 TRUE

April 4.30 5.11 FALSE 14.64 10.00 TRUE

Fraser 85.24 32.47 TRUE 26.34 8.77 TRUE

Parents’ input

TG−MAX TE−MAX TG−MAX > TE−MAX TG−MIN TE−MIN TG−MIN > TE−MIN

Adam 23.59 12.58 TRUE 35.27 15.85 TRUE

Eve 12.45 10.60 TRUE 21.17 12.34 TRUE

Sarah 26.97 12.91 TRUE 33.37 13.73 TRUE

Peter 42.68 14.99 TRUE 47.19 15.64 TRUE

Naomi 12.49 8.88 TRUE 27.12 14.04 TRUE

Allison 10.70 7.07 TRUE 21.32 11.11 TRUE

May 7.60 5.81 TRUE 19.09 12.30 TRUE

Fraser 88.36 26.45 TRUE 30.80 10.37 TRUE

4 Discussion

In this paper, we �rst developed a version of the TP that is testable on the corpus data.

Di�erent from Yang’s functional TP that compares the number of irregular verbs, this version

of the TP compares the time complexity directly. The TP has been tested to be true on eight

children’s data. Therefore, we conclude that the corpus data supports the TP’s claim, that a

12



productive rule is derived when it reduces the time complexity of the lexical access time in

serial search. However, there are still some fundamental assumptions about the TP that need

to be address.

4.1 Serial Search vs Parallel Process
One fundamental assumption of the TP is that the lexical retrieval follows serial search

process. However, an alternative to this model could be parallel search, where words are

stored in di�erent bins and all the bins are searched in parallel (Forster, 1992). In TP’s GSS

model, all the items are stored in one ranked list, Bin S. The rank of the item determines the

lexical access time. However, if the words are not stored in one ranked list, but in multiple

ranked list, and the serial search is conducted on all the ranked lists simultaneously, the lexical

access for one word would change drastically. For example, as shown in figure 3, if there is

only one list and wi is the 30th word one the list, the lexical access time for wi would be 30.

However, if there are multiple lists and wi happens to the the �rst word in one of the lists, the

lexical access time for wi would be 1.

Figure 3: Parallel search for multiple bins

One Bin

w1

w2

w3

. . .

30th wi

. . .

wn

Multiple Bins

1st wi w1 w2

wa w4 w3

. . . . . .

wℎ wk wm

wt wj wn

4.2 Static vs Dynamic Learning Process
In the calculation of the TP, the rule deriving process was seen as a one-time behavior that

when the ratio of irregular verbs and regular verbs reached to an equilibrium the rule will be

derived. However, in real life acquisition, the rule deriving behavior should be dynamic, that

the comparison of the time complexity of is constantly happening. The acquisition order of

the regulars and irregulars are important in the dynamic model. For verb acquisition, most

of the commonly used verbs in child directed speech are irregular verbs, which would lead

to a late acquisition of the rule. In plural form acquisition, the regular plural forms are also

frequent in child directed speech, which would lead to an early acquisition of the plural form.

The future work on the TP should be focus on how to develop a dynamic model that could

also incorporate the parallel process.

13



14



15



16



17



18



19



20



21



References

Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet. Glottometrics, 3(1):

143–150, 2002.

Je� Alstott and Dietmar Plenz Bullmore. powerlaw: a python package for analysis of heavy-

tailed distributions. PloS one, 9(1), 2014.

Stephen Robert Anderson. West Scandinavian vowel systems and the ordering of phonological
rules. PhD thesis, Massachusetts Institute of Technology, 1969.

R Harald Baayen. Word frequency distributions, volume 18. Springer Science & Business Media,

2002.

Curtis A Becker. Semantic context and word frequency e�ects in visual word recognition.

Journal of Experimental Psychology: Human Perception and Performance, 5(2):252, 1979.

Jean Berko. The child’s learning of english morphology. Word, 14(2-3):150–177, 1958.

Lois Bloom. One word at a time: The use of single word utterances before syntax, volume 154.

Walter de Gruyter, 1973.

Lois Bloom, Lois Hood, and Patsy Lightbown. Imitation in language development: If, when,

and why. Cognitive psychology, 6(3):380–420, 1974.

Roger Brown. 1973: A �rst language: the early stages. cambridge, ma: Harvard university

press. 1973.

JB Carrol. On sampling from a lognormal model of word frequency distribution. Computa-
tional analysis of present-day American English, pages 406–424, 1967.

John B Carroll. A rationale for an asymptotic lognormal form of word-frequency distributions.

ETS Research Bulletin Series, 1969(2):i–94, 1969.

Andrew W Ellis and Catriona M Morrison. Real age-of-acquisition e�ects in lexical retrieval.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(2):515, 1998.

Kenneth I Forster. Accessing the mental lexicon. New approaches to language mechanisms,
pages 257–287, 1976.

Kenneth I Forster. Memory-addressing mechanisms and lexical access. Orthography, phonol-
ogy, morphology, and meaning, page 413, 1992.

Simon Gerhand and Christopher Barry. Age-of-acquisition and frequency e�ects in speeded

word naming. Cognition, 73(2):B27–B36, 1999.

Morris Halle and Alec Marantz. Distributed morphology and the pieces of in�ection. hale, k.

& sj keyser (eds.), the view from building 20, 1993.

Roy Patrick Higginson. Fixing: Assimilation in language acquisition. PhD thesis, Washington

State University, 1985.

Davis H Howes and Richard L Solomon. Visual duration threshold as a function of word-

probability. Journal of experimental psychology, 41(6):401, 1951.

Paul Kiparsky. " Elsewhere" in phonology. Indiana University Linguistics Club, 1973.

Elena Lieven, Dorothé Salomo, and Michael Tomasello. Two-year-old children’s production

of multiword utterances: A usage-based analysis. Cognitive Linguistics, 20(3):481–507, 2009.

Brian MacWhinney. The CHILDES Project: Tools for analyzing talk. transcription format and
programs, volume 1. Psychology Press, 2000.

Brian MacWhinney. Morphosyntactic analysis of the childes and talkbank corpora. In LREC,

pages 2375–2380, 2012.

Benoît Mandelbrot. Information theory and psycholinguistics. BB Wolman and E, 1965.

Gary F Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T John Rosen, Fei Xu, and

Harald Clahsen. Overregularization in language acquisition. Monographs of the society for
research in child development, pages i–178, 1992.

22



LM McCusker. Some determinants of word recognition: Frequency. In 24th annual convention
of the southwestern psychological association, fort worth, tx, 1977.

Isabel Moreno-Sánchez, Francesc Font-Clos, and Álvaro Corral. Large-scale analysis of zipf’s

law in english texts. PloS one, 11(1), 2016.

Catriona M Morrison and Andrew W Ellis. Roles of word frequency and age of acquisition in

word naming and lexical decision. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 21(1):116, 1995.

Wayne S Murray and Kenneth I Forster. Serial mechanisms in lexical access: the rank hypoth-

esis. Psychological Review, 111(3):721, 2004.

Kenneth R Paap, Sandra L Newsome, James E McDonald, and Roger W Schvaneveldt. An

activation–veri�cation model for letter and word recognition: The word-superiority e�ect.

Psychological review, 89(5):573, 1982.

Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review and

future directions. Psychonomic bulletin & review, 21(5):1112–1130, 2014.

Steven Pinker and Michael T Ullman. The past and future of the past tense. Trends in cognitive
sciences, 6(11):456–463, 2002.

Jacqueline Sachs. Talking about the there and then: The emergence of displaced reference in

parent-child discourse. Children’s language, 4:1–28, 1983.

Kathryn D Schuler, Charles Yang, and Elissa L Newport. Testing the tolerance principle:

Children form productive rules when it is more computationally e�cient to do so. InCogSci,
2016.

Charles P Whaley. Word—nonword classi�cation time. Journal of Verbal learning and Verbal
behavior, 17(2):143–154, 1978.

Charles Yang. Dig-dug, think-thunk. The London Review of Books, 22(10), 2000.

Charles Yang. On productivity. Linguistic variation yearbook, 5(1):265–302, 2005.

Charles Yang. The price of linguistic productivity: How children learn to break the rules of
language. MIT Press, 2016a.

Charles Yang. The price of linguistic productivity: How children learn to break the rules of
language. MIT Press, 2016b.

Charles Yang. Some consequences of the tolerance principle. Linguistic Approaches to Bilin-
gualism, 8(6):797–809, 2018.

George Kingsley Zipf. The psycho-biology of language.(1935). List of Figures List of Figures
List of Figures, 1935.

George Kingsley Zipf. Human behavior and the principle of least e�ort. 1949.

23


